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Accelerating Convergence of Trigonometric 
Approximations 

By William B. Jones and G. Hardy 

Abstract. Lanczos has recently developed a method for accelerating the convergence of 
trigonometric approximations for smooth, nonperiodic functions by modifying their 
boundary behavior. The method is reformulated here in terms of interpolation theory and 
is shown to be related to the theory of Lidstone interpolation. Extensions given include a 
new type of modifying function and the establishment of criteria for the convergence of 
associated interpolation series. Applications are given for the error function and its 
derivative. 

1. Introduction. We are concerned with the problem of accelerating the con- 
vergence of trigonometric approximations, such as truncated Fourier series and 
trigonometric sums for interpolation at equally spaced points. Let f(x) be a real 
valued function of a real variable x defined on the interval [-1, 1]. If f(x) is integrable 
on [-1, 1], its Fourier series is given by 

(1. ) ? + Z (ak cos kirx + bk sin krx), 2 k- 

where 

(1.2) ak = J f(t) cos k'rt dt, bk = f(t) sin kir t dt. 

The nth partial sum of (1.1) will be denoted by Sn(x). The sum 

(1.3) S*(x) + E (a* cos k7rx + b* sin k7rx) + a2- cos nmrx, 
2 k-I 2 

where 
n-I 1 n-1 

(1.4) a* -- E f(xv,) cos k'7rx,, b*-- E f(x,,) sin k7rxa, 
n a--n a--n 

is called the trigonometric interpolation sum of order n relative to the 2n points 

(1.5) x a , a = -nfl 0, O, n, n- 1. n 

It is well known that 

(1.6) Sn*(Xa) f(Xa) a = -n, 0 * O - 1, 
and that the partial sums of (1.3) are best approximations of f(x) at the points (1.5) 
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in the sense of least squares. It is shown by Jackson [5, pp. 22, 50, and 123] that if, 
for p _ l,;f "'(x) exists and is bounded on [-1, 1], and if 

(1.7) (k)(-1) = f(k)(l) k = O, 1, , p, 

then there exist constants A, B, and C such that for n 2, 3, * * . 

(1.8a) lf(x) - S.(x)l < (A log n)/n", -1 < x < 1, 

(1.8b) Ia.j < B/n', Ib I < B/n", 

(1.8c) If(x) - S*(x)l ? (C log n)/n", -1 ? x < 1. 

Although somewhat sharper results are known, for our purpose the simplified 
form summarized above suffices to indicate the important connection between the 
rate of convergence of trigonometric approximations of f(x) and the smoothness 
and boundary conditions (1.7) satisfied by f(x). Conditions (1.7) make it possible 
to extend the definition of f(x) as a periodic function with a pth derivative over the 
entire real line. Thus, if f(x) were a smooth function on [-1, 1] (even analytic) but 
did not have the boundary behavior (1.7), its trigonometric approximations could 
converge extremely slowly. 

Lanczos, in 1964 [8] and 1966 [9], developed a method for dealing with this 
problem by modifying a given function f(x) by a polynomial h1,(x) so that the 
corrected functions 

(1.9) gp(x) f(x) - hp(x) 

will have both the smoothness of f(x) and the desired boundary behavior. He intro- 
duced a basic system of polynomials Bk(x) that plays a central role in the method, 
and considered two types of modifying functions hpz(x). We introduce a third type 
and show that all of the types studied so far have a simple and natural formulation 
in the framework of interpolation theory (Section 2). In connection with this, certain 
combinations of the polynomials Bk(x) and related linear functionals are shown to 
form biorthogonal sets in terms of which the hp(x) are easily derived. We have also 
studied the additional question of convergence of the sequences of modifying func- 
tions {h,(x)}. For each type considered we are able to give sufficient conditions for 
uniform convergence and uniform estimates of the truncation error (Section 4). In 
the course of this study, we found that the modifying function hp(x) of Section 2, 
Method 2 (considered by Lanczos the most useful) is, in fact, an interpolation poly- 
nomial introduced by Lidstone [10] in 1929 and later investigated by Whittaker 
[11], Widder [12], Boas and Buck [2] and others. We also found that the odd poly- 
nomials B2k,I(x) coincide with the so-called Lidstone polynomials Ak(x) and that 
some of Lanczos' work on this problem contributes to the study of Lidstone inter- 
polation. 

The method of accelerating convergence of trigonometric approximation is 
applicable to functions defined either by an analytical expression for a continuous 
interval or by a set of tabulated values at equally spaced points. We have earlier 
used the method for representing seasonal variations of ionospheric characteristics 
[6] and vertical profiles of ionospheric electron density [7]. As a further illustration 
we include here applications to the error function and its derivative (Section 2). 
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2. Modifying Functions. In this section we will determine modifying functions 
hp(x) such that g,(x) defined by (1.9) will have a bounded pth order derivative and 
satisfy boundary conditions of the form (1.7). Each of the cases dealt with here reduces 
to an interpolation problem in the following sense: Let V denote a linear space of 
dimension N over the real numbers and let L1, * , LN denote linear functionals 
defined on V. Then, given a set of real values w1, * * , WN, the problem of interpolation 
is to find an element h belonging to V such that 

(2.1) Lj(h)= wj, j= 12, ,N. 

Elements F1, * *, FN in V and linear functionals L1, *. , LN are said to form a 
biorthogonal set if 

(2.2) L,(Fk) 
= 

0ib 
= 0, if k , 

- 1, if j= k. 

It is well known [3] that a solution to (2.1) is given by 
N 

(2.3) h = E kFk 
k=1 

provided the Fk and Li form a biorthogonal set. In the following we restrict V to 
spaces of polynomials and consider three interpolation problems. In each case the 
solution is developed in the form (2.3). First, however, we must introduce Lanczos' 
system of polynomials. 

Definition 2.1. Let the sequence { B1(x) } be defined as follows: 

Bo(x) = 1, B1(x) = x, 

B'(x)= B_1(x), k = 2,3, 

B2k+1(0) = B2k+1(1) = 0, k = 1, 2, 

REMARKS. The following statement can be verified by induction: For each 
k = 0, 1, 2, * , B1(x) is a uniquely determined polynomial of degree k and, further- 
more, 

(2.4) B21(-X) = B27(x), (even function) 

(2.5) B2k1l(-x) = -B2k+l(x), (odd function) 

(2 .6) BmB(x) = B_.m(x), 0 < m < k 

=0, m > k. 

Lanczos [9] has pointed out a close connection between the B,(x) and Bernoulli 
polynomials. 

The biorthogonality relations needed are established by 
THEOREM 2.1. Each of the systems offunctions Fk and linear functionals Li given 

below forms a biorthogonal set: 

A. 

(2-7) L, (h)F h B1+(()h 1), J 0, 1, .. * p. 

Fk (x) I 2Bk (x), k =0, 1, **,P. 
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B. 

(2.8) L23+l(h) h(2iI(0) L2i+2(h) = hz2iz(1), (I G 1, , 

F2k+l(x) = B2k+1( - x), F2k+2(x) = B2k+l(x), k = 0, 1, . ,n. 

C. 

(2.9) L2i+1(h) = h(2j+1)(0), L2i+2(h) h=2'+1(21) j( I0, 1, . , rn, 

F2k+1(x) = -B2k+2(l -x), F2k+2(x) = B.9,k+9(x), k = 0, 1, t, i. 

Proof. In case A we have 

Lj(Fk) ' [Bi+(') ( - Bk+(-t] 

Thus if j # k, then Lj(Fk) = 0. For if j> k + 1 then Bk(+(x) 0 and if j = k + I 
then Bk+i)(x) 1. If j < k then Bk+,_j(l) = Bk+1 - j(-1) when k + 1 - j is even 
and BA+,j(l) = Bk+l_(- 1) = 0 when k + 1 - j is odd. On the other hand, L i(F) = 

[4B1(l) - B,(-1)] = 1. In case B we obtain the following: 

L2i+l(F2k?l) = B(2 (1) = 0, if i > k, 

(2.10) = B2k+1 2i(1) = 0, if j < k, 

= 1, if i= k. 

L2i+l(F2k+2) = B(2k+(0) = 0, if i > k, 

(2.11) = B2k?+19j(0) = 0, if j ? k. 
L2i+2kF2k+,) = B2k+2() = as in (2.11). 

L2i+2(F2k+2) = B2k+1(1) = Sik as in (2.10). 

Case C follows in a similar manner and hence is omitted. 
We can now derive the desired modifying functions hZ,(x). 
Method 1. Let f(x) have a bounded derivative of orderp on [-1, 1]. Then 

(2.12) g;(x) = f(x) - h,(x) 

will have a bounded pth order derivative on [-1, 1] and satisfy conditions of the 
form (1.7), provided h,(x) is a polynomial satisfying 

(2.13) h") (1) - h ((- l) = f ") (1)- f 1i-), =0, 1, . P; 

that is, h,(x) is a polynomial solution of the interpolation problem (2.1), where the 
functionals L, are defined by (2.7) and wi = f(i)(l)-fi)(-1),j = 0, 1, ... p. By 
(2.3) and Theorem 2. 1A, the desired h,(x) is given by 

1 v 
(2.14) hv(x) = 1 [f(k)(l) 

k-O 

The trigonometric approximations (1.1) and (1.3) will converge to gp(x) according 
to (1.8). It should be noted that if f(x) is defined by a set of tabulated values, the 
derivatives fi'(?L 1) appearing in (2.14) must be approximated by numerical methods 
of differentiation (see [3] for standard techniques of numerical differentiation; 
Lanczos [8] discusses a special technique for approximating the derivatives of eyen 
order). In certain problems it is advantageous to have the modifying function h,(x) 



ACCELERATING CONVERGENCE 551 

expressed in terms of only even- or only odd-order derivatives of f(x). Such expres- 
sions are formulated by the following two methods. 

Method 2. Let f(x) have a bounded derivative of order p = 2m + 1 on [0, 1]. 
Define g,(x) as an odd function by 

(2.15) g,(x) f(x) - hp(x), 0 : x _ 1, 

= -gp- x), -1 _ X < O, 

where hp(x) is a polynomial such that h,(O) = f(O), so that g,(O) = 0. Now in order 
for g,(x) to be p times differentiable on [-1, 1], it is necessary and sufficient that 

(2.16) g9P(?-)-g=)(O), 0, 1,. , 

where gi)(0-) and gt'(0+) denote the left and right derivatives at x = 0, respec- 
tively. Thus g,(x) must satisfy two sets of boundary conditions, (2.16) and 

(2.17) gP/ (-1) = g2,i) (1), i = 0, 1, * ,p. 

Although (2.16) and (2.17) comprise 4m + 4 conditions, half of these (those with 
odd j) will be satisfied automatically since g,(x) is an odd function. For it follows 
from the oddness of gp(x) that 

(2.18) gP,2k+1)(X) = g,2k41)(_X), k = 0, 1, , m. 

Moreover, g2k)(x) = _g(2k)(_X) implies g;/k)(o) = 0, and together with (2.17), 
g 2k(1) == 0. Therefore, it suffices that the polynomial h,(x) satisfy the 2m + 2 con- 
ditions 

(2.19) 2k)p (0) (0) k = 0) 1, m; 
h(2k) (1) 

f (2k) (1) 

that is, that hp(x) be a polynomial solution of the interpolation problem (2.1), where 
the functionals Li are given by (2.8) and w2i+l = f(2i3(O), w2i+2 = f(2i)(1), ] 

0, 1, . .. , m. Thus, by (2.3) and Theorem 2. 1B the desired h,(x) is given by 

(2.20) hp,(x) E [f 2i) (0)B2i+1( -_x) + f(2j)(1)B2i+1(x)]. 
i-o 

This is the interpolation problem whose solution (2.20) was given by Lidstone [10]. 
Again we obtain a function g,(x) whose trigonometric approximations (1.1) and (1.3) 
converge according to (1.8). A useful feature of this method (pointed out by Lanczos) 
is that, although (2.20) involves only derivatives of f(x) up to order 2m, g"(x) has the 
advantage of having a bounded derivative of order 2m + 1. Thus, for m 0, no 
derivatives of f(x) are required in (2.20), but gl(x) is differentiable and satisfies gl(- 1) 
= gl(l). This case is particularly useful for approximating tabulated functions f(x) 
whose derivatives are unknown. 

Method 3. Let f(x) have a bounded derivative of order p = 2m + 1 on [0, 1]. 
Let g,(x) be defined as an even function by 

(2.21) g,(x) = f(x) - hI(x), 0 < x < 1, 

= gJ(-x), -1 < x < 0. 
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Again we wish to determine a polynomial h,(x) such that gp(x) will be p times dif- 
ferentiable on [-1, 1] and satisfy (2.17). But, as in Method 2, g,(x) must also satisfy 
(2.16), giving a total of 4m + 6 boundary conditions. In this case more than half 
(2m + 4) of these conditions (those with j even) will be satisfied automatically since 
g,(x) is an even function and hence 

(2.22) g2k)(X) = g(2k)(_X), k = 0, 1, * * * , m + 1. 

Moreover g(2k+l)(x) = _g(2k+1)( x), implies g2,k+)(0) = 0, and together with 
(2.17), g'(2k+1(1) = 0. Thus it suffices for the polynomial h,(x) to satisfy the 2m + 2 
conditions 

h(2k+l)(0) (21c+l) (0) 

(2.23) 'p' =""' k = 0, 1, m; 
J(21+l)(1) = f(2k+1)(1) 

that is, that hp(x) be a solution to the interpolation problem (2.1), where the func- 
tionals Li are given by (2.9) and w2i+1 = f (2 +1(0), w2j+2 = f(2i+1) j = 0 1, 
* , m. By (2.3) and Theorem 2.lC the desired hp(x) is given by 

m 
(2.24) h,(X) E 

[f(2i+l)(1)B2i+2(x) - f(2i+1(0)B2i+2(1 - x)J. 
-O 

All of the modifying functions (2.14), (2.20) and (2.24) arise in a simple and natural 
way when we consider the associated interpolation problems and biorthogonality 
relations of Theorem 2.1. The first two modifying functions are given by Lanczos 
[9]. The new function (2.24) has the advantage that the corrected function (2.21) can 
be extended as a periodic function with 2m + 2 derivatives, although (2.24) involves 
only derivatives up to order 2m + 1. In practice (2.24) would therefore be more 
appropriate than (2.20) when the derivatives f ')(0) and f(i)(l) are known up to an odd 
order, say, j = 2m + 1 but not for j = 2m + 2. For example, if the values of the first 
derivative f'(0), f'(l) were given but f"(0), f"(l) were unknown, then (2.24) would 
be more suitable than (2.20). 

The following examples illustrate the use of Methods 2 and 3 in accelerating the 
convergence of trigonometric interpolation sums. For Method 2, gp(x) is odd so that 
its interpolation sum (1.3) reduces to a pure sine series. If this sum is truncated after 
K terms, the resulting approximation of f(x) has the form 

K 

(2.25) Yp,K(X) = hp(x) + > b* sin kirx, 1 < K < n - 1, p 2m + 1, 
k=1 

where 

(2.26) b*= > gp()sin kir n 

and where hp(x) and gp(x) are defined by (2.20) and (2.15), respectively. For Method 3, 
gp(x) is even, so that its sum (1.3) is a pure cosine series, which, when truncated after 
K terms, gives an approproximation to f(x) of the form 

K 

(2.27) Yp K(X) hP(x) + ? + E a* cos kirx, 1 < K ? n - 1, p = 2m + 2, 
2 k==1 
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where 

(2.28) = g E cos k - + [g2(0) + (_ )g ,(1)], 

and where hIz(x) and gp(x) are given by (2.24) and (2.21), respectively. For convenience 
we list the first few polynomials Bk(x): 

x2 
B1(x) = x, B2 x) = 2 - 2 6' 

x 3 
x x~~~~~4 2 7 

(2.29) B3(X) = 6 - B4(X) = 4 1 + 3 
6 6 24 ~~~~1 2 360' 

x x 7x \xL x 7X2 31 
=120 36 360 B6(x,-720 144 720 15120 

Example 1. Let f(x) denote the error function with normalized variable 

(2.30) f(x) = erf2x= 2- Afet2 dt, 0? x ? 1. 
\/7r 0 

The following values of the derivatives of f(x) are used: 

v 1 2 3 4 5 

V/rif (0) 4 0 -32 0 768 

Vi7re4f ̂(1) 4 -32 224 -1280 4864 

Table 1 contains the coefficients (2.26) and (2.28), k = 0, 1, * * *, 10, calculated with 
n = 200 for each of the values m = 0, 1, and 2. Also included in Table 1 are the values 
of the maximum absolute error 

(2.31) Mp,k = max { if(a/200) - Yp, k(a/200)1: a = 1, 2, * , 2001. 

The tabulated values of f(x) used as input were taken from [1] with ten significant 
digits and most of the calculations were performed with double-precision arithmetic 
to reduce errors of roundoff. The acceleration of convergence is evident both in the 
series of coefficients a* and b* and in the values of MP, k* For example, withp = 1, 
the lb*I decrease from lb*j 3 X 10' to lb * I 2.10-?, whereas, with p = 5, they 
decrease from Ib*I _ 4 X 10` to Ib* ' 1 X 10-10. Also, it is seen that M1, lo= 7.3 X 
1O-6, whereas M5,8 = 8.0 X 10-10. In this example the convergence is somewhat 
faster with Method 2 than with Method 3. This is probably due to the fact that f(x) 
is naturally an odd function. In the next example, Method 3 gives faster convergence, 
but then we are dealing with an even function. 

Example 2. Here we consider the derivative of the error function (with nor- 
malized variable) 

(2.32) f(x) = 2e-(2z) < x <1. 
-v7r 

I 
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Table 1. Coefficients a", and b* k and Maximum Absolute Error 

M From Analysis of erf 2 x, 0 5 X l 1 
P, k 

Method 2 (m 0, pl) Method 3 (m 0, p = 2) 

k b*" 1M k an k M2, k 

0 1.4367884391 
1 .3462463177 2.7 x 10-2 .0842190610 4.4 x 10- 
2 .0259554394 1.6 x 10-3 -. 0336517436 9. 8 x 10-3 
3 .0013111854 5.4 x10-4 -.0065131039 3.3 x 103 
4 -.0002449383 3.6 x 10-4 -.0019205011 1.4 x 10- 
5 .0001435006 2.5 X 10-4 -.0005950163 7.9 X 10-4 
6 -.,0000877068 1. 8 X 10-4 -. 0003421257 4.5 x 10-4 
7 .0000570549 1. 4 x 104 -. 0001439425 3. 1 x 10-4 
8 -.0000390231 1. 1 X 10-4 -. 0001053547 2. 0 X 10-4 
9 .0000277945 8. 8 x 10-5 -. 0000512496 1. 5 X 10-4 

10 -.0000204646 7. 3 X 10-5 -.0000426522 1.1 X 10-4 

Method 2 (in 1, p = 3) Method 3 (m 1, p = 4) 

k bk M3,k a k M4,k 

0 1.4367884391 
1 . 3249169740 2. 9 x 10-2 .4073791302 1. 0 X 10-2 
2 .02862]6074 5.9 x 10-4 -.0075135659 2.9 x 19-3 
3 .0005212097 1. 3 x 104 -.0025234734 4.0 x 10-4 
4 .0000883327 4.6 x 10-5 -.0002868649 1.1 x 10-4 
5 -.0000271341 2.1 x 10-5 -.0000779602 3.6 x 10-5 
6 . 0000110401 1. 1 x 10- -.000019432] 1.7 X 10-5 
7 -. 0000051298 6. 1 x 106 -.0000093485 7.6 X 10-6 
8 .0000026358 3.7 X ]06 -. 0000032524 4. 3 X 10-r 

9 -.0000014638 2.4 X 10-6 -. 0000019948 2.3 X 10-r 
10 .00000086468 1.6 x 10- -.00000083105 1.5 X io6 

Metbhod 2 (m 2, p - 5) Mctbod 3 (m 2, p = 6) 

k b M a' 10M 
k 5,k k 6,k 

0 1.4367884391 
1 .4113615483 2.7 X 10-2 1.4133394885 6.0 x 10-3 
2 .0259202145 8. 8 X 10-4 .0049370204 1.3 x 10 3 

3 .0008769487 4.4x ]0-6 -.0011435552 1.1 x 10-1 
4 .0000039141 6. 2x 10-7 -.0000923245 1.7 x 10-5 
5 .00000052818 9.2x 10 _ 

-.0000135787 3.5 x 10-r 
6 -.000000076746 1. 6 X ]0" -.0000023531 1.2 x 10 
7 .0000.0013603 2.7X 10-9 -.00000079797 3.9 X 10- 
8 .0000000023012 8. O X 10-10 -.00000021273 1. 8 X 10-7 
9 .00000000012557 9.2X 10'1 -.00000010196 7.4 x 10-8 

10 .00000000023073 6.9 X 10-10 -.000000034214 3.9 10i- 
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For this example the following values of the derivatives of f(x) are needed: 

v 1 2 3 4 5 

irft') (0) 0 -16 0 384 0 

V 7re4f(v)(1) -16 112 -640 2432 1024 

Table 2 contains the coefficients a* and b* and values of Mp, k calculated with n = 200. 
Again it is clear that both Methods 2 and 3 accelerate the convergence, but Method 3 
appears to be better suited in this example. As an illustration of this we note that 
M,47 = 1.0 X 10-4, whereas M4 7 - 3.6 X 10-8. 

3. Fourier Series for the Bk(x). In Section 4 we shall make use of the Fourier 
series for the polynomials Bk(x), which are given in the present section, together with 
some helpful uniform bounds. Using (1.1) and (1.2) one can easily show that the 
Fourier series fl(x) for B,(x) on [- 1, 1] reduces to 

(3.1) 31(x) = 2 E (-1k1 sin ki:x 

This series converges absolutely and uniformly to Bl(x) on every closed subset of 
(-1, 1); at x = + 1 it converges to zero. By successive integration of p3(x), we 
obtain a sequence of functions { 3k(X)) given by 

(3.2) k-1 (kS)n kx = 1, 2, 

+ 1 
co cs kirx (3.3) I32n(X) = 2(-l)n+ 1 

(-)k 
co n =1 2, ... 

where the boundary conditions I32n+1(0) = 02n+1(1) = 0 n > 1, determine the 
constants of integration. The convergence of the series (3.2) and (3.3) is uniform and 
absolute for all x. Definition 2.1 implies that 13k(X) = Bk(x) for -1 < x < 1, k > 2. 

THEOREM 3.1. For n = 1, 2, , and all x 

(3.4) (-1)n2 32+1(X) - 2 sin iix/i-2.+ll1 < M/(27r)2"+l, 

and 

(3.5) I(- l)Th2n(x) - 2 cos irx/r-21 ? M/(2ir) , 

where M = 8(7r2/6 -1). 

Proof. From (3.2) and (3.3) we obtain for n = 1, 2, 

2 sin 7r 
0 

2 
_ 

2 
(2)2n+i 

|(-t) l82n+l(x - (k _kE2 (k7r) (27r) k-2 k 

and 

2- 2cosr_x 
2 = 2 
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Table 2. Coefficients a' and b * and Maximum Absolute Error 
k k 

M From Analysis of 2 e -(2 X)2 0 x X 1 
p, k fri 

Method 2 (m 0, p =] ) Method 3 (m 0, p = 2) 

k M 
k 1, k ak M2,k 

0 .9953222650 
1 -.1322909918 1. 3 x 101 .5103783892 9.3 X 10-2 
2 .1057200701 4.6 X 10-2 .0899174316 2.9 x1 0-3 

3 .0306922785 2. 1 X 102 .0024561430 1.0 X 10-3 
4 .0120668632 1. 2 x 10 2 .0005550106 4. 8 x 1l0-4 

5 .0046732464 7. 8 x 10-3 -.0002131106 2.7 X 10-4 

6 .0032244576 5. 3 x 10-' .0001040505 1.6 X 10-4 

7 .0015827289 4. 1 X 10-3 -.0000564048 1.1 x i0-4 
8 .0013239247 3.1 x I0- .0000331222 7.3 X 10-5 
9 .0007245222 2. 5 x 0 -.0000206943 5. 3 X 10-5 

10 .0006699766 2.0 x 10-3 .0000135823 3.9 X 10-5 

Method 2 (in 1, p = 3) Method 3 ( m- 1, p = 4) 

k bk M 3, k a k M4 k 

O .9953222650 
1 -.6399096414 3.5 xlO2 .6461652090 8.6 x 10-2 
2 .0236045634 1.4 x 10-2 .0814307553 4. 2 x 10-3 
3 .0118915881 2.6 x10-3 .0041325235 2.8 X10-6 
4 . 0018024255 9. 3 X 10-4 .0000245933 5.0 x 10-6 
5 .0006122979 3.7 x104 .0000041483 8.9 X10-7 
6 . 0001831435 2.0 X ]0-4 -.00000072329 1. 8 X 10-7 
7 .0001027920 1.0 X 1 04 .00000014953 3.6 x I 0 
8 .0000408712 6.5 x10-5 -.000000028876 1. 8 x 108 

9 .0000282015 4. 0 x1o05 .0000000017781 2.0 X I0- 
10 .000013054 2 2. 8 x ] 05 .0000000036552 1.6 x I 0 

Method 2 (ml p = 5) Method 3 (na 2, p = 6) 

b 
k M5 k ak k 6M k 

0 .9953222650 
1 -2.2200684770 2. 0 x 10-2 .6681781391 8. 5 x 1Io 

2 -.0155101070 6.0 x 10-3 .0810868033 4.2 x 10 3 

3 .0053888769 7.0 X 10-4 .0041627196 2.4 x 10 5 

4 .0005800920 1.4 X ]1O4 .0000192190 7. 3 X 10-6 
5 .0001066470 3. 5 x 10-5 0000055572 1.7 x I0-r 
6 .OOOQ221778 1.4 x 10-5 -.0000011951 5. 3 X 10-7 

7 .0000087741 5.2 x 10- .000000033664 1.9 X 10-7 

8 .0000026733 2.6 x 10-6 -.00000011285 8.0 x 10-8 

9 .0000014414 1. 2 x 10 -r .000000043199 3.6 x 1o- 

10 .00000053749 7. 2 x 10-7 -.000000018358 1. 8 x 10-8 
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It suffices to set 

M 2 E(k)=8(6-1) n 2. 

A proof of (3.4) was given in [12]. 
TiEOREM 3.2. For n = O, 1, 2, * , and all x 

(3.6) I3(x) | 

where M1 = 2(7r2/3 - 1). 
Proof. From Theorem 3.1 

1a2n+ (x)I < (2 + M/22n+ 1)/ir2n+ 1 n = 1, 2, ., 

and 

1I2n(x)I I (2 + M/22n)/ir2n, n = 1, 2, *-, 

where M = 8 r2/6 - 1). Thus it suffices to let M1 = 2 + M/2. The cases n 0, 1 
follow by inspection. 

4. Convergence of Interpolation Series. Three interpolation problems were 
solved in Section 2 by the polynomials h,(x) defined by (2.14), (2.20), and (2.24). 
Taking the limit as p -> c, we obtain interpolation series. In this section we give 
sufficient conditions for uniform convergence of these series and explicit error bounds 
for the partial sums. Our results will be expressed in terms of functions of class Q. 

Definition 4.1. A function f(x) is said to belong to class Q if f(x) is entire and if 
there exists a positive number q < 7r such that 

(4.1) f(m)(0) = O(q-), (m -> ) 

Remarks. Let p(f) denote the order of an entire function f(z) of a complex 
variable z and let r(f) denote the type of its order. Then it can be shown that class Q 
consists of all entire functions f(z) such that either [0 < p(f) < 1] or [p(f) = 1 and 
0 < r(f) < 7r]. As examples of functions in class Q we mention all polynomials 
and the transcendental functions e", sin az and cos az with lal < gr. The following 
useful property of class Q will be needed, a proof of which is given in [12]: 

LEMMA 4.1. Let f(x) belong to class Q and let [a, b] be an arbitrary closed finite 
interval. Then there exists a positive number q < 7r such that 

(4.2) f'(m(x) = O(q-) (m -* co) 

uniformly on a < x < b. 
Widder [12], in 1942, proved the following theorem for Lidstone series, which 

arises from (2.20). 
THEOREM 4.2. Let f(x) belong to class Q. Then the series 

(4.3) f(O)B1(1 - x) + f(1)B1(x) + f(2)(O)B3(1 - X) + f(2)(1)B3(X) + ... 

converges uniformly to f(x) on [0, 1]. Moreover, there exists a constant M2 and a 
positive number q < ir such that 

(4.4) If(x) - fn(x)j -< M2(-q 0 < x < 1, n = 1, 2, 

where fn(x) denotes the nth partial sum of (4.3). 
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We shall now derive similar results for the interpolation series arising from (2.14) 
and (2.24). For that purpose we shall make use of the following two theorems. 

THEOREM 4.3. If f(m+l)(x) exists and is continuous on [-1, 1], then for - I ? x ? I 

f (x) = f (t) dt + 2 E [f 
k 

(1) _ f k)(_ 1)]Bk l(X) 

(4.5) 
x 

1 
+ k[) 

- l,f fm+l)(t)f +l(x - t - 1) dt. 

Remark. Theorem 4.3 was derived by Lanczos [9, Eq. (16.38)] and hence will 
not be proved here. The following is a similar result. 

THEOREM 4.4. Let f(2m+i)(x) exist and be continuous on [0, 1]. Then 

(4.6) f(x) = Hm(x) + Gm(X), 0 x < 1, 

where 

(4.7) H. xm) = f(t) dt + [f2k1)(1 )B9k(X) - f2k-1'(0)B2k(1 - X)] 
kQ1 

and 

(4.8) Gm(x) = J 1(im+l)(t)823n+I(X + t - 1) - 2m+l(X - t - 1)] dt. 
2 

Proof. From successive integration by parts we obtain, for 0 < x _ 1, 

2GO(x) = f f'(t)[f3(x + t - 1)- I1(X t - 1)] dt 

2m 
- 

>I {f() (t)[(_1 )k- lfk+l(X + t 1) + 3k+1(x t 
- 

1)]} -o + 2Gm(x). 
k-1 

Now using the periodicity property #3,(x + 2) = f3,(x) and cancelling terms in the 
above sum, we have 

(4.9) G0(x) = f [(2k-1) (1)B2k(X) - 12k I(0)B2k(1 - x)] + Gm(x). 
k-1 

Here we have also replaced j32,(x) by B2k(x) and 2k(x -1) by B2k(x - 1) = B2k(I - x). 
On the other hand we have, for 0 < x ? 1, 

2GO(x) = f t'(t)13j(x+t-1) dt-f 1'(t)13j(x-t--1) dt-f f'(t)31 (x-t-1 ) dt 

(4.) J f'(t)(x+t-1) dt- f'(t)(x-t-1) dt- f1'(t)(x-t+1) dt 
(4 . 10)?o 

= 2[f tf'(t) dt + f(x) - f(1)] 

1 
= 2 f(x) - f1(t) dt]. 

Combining (4.9) and (4.10) gives (4.6) and this completes the proof. 
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We come now to the two main theorems of this section. 
THEOREM 4.5. If f(x) belongs to class Q, then the series 

(4.11) 2 f(t) dt + ! j [f ()(1) - f1')( l)]B,(x) 
2-1 2kA-O 

converges uniformly to l(x) on -1 < x ? 1. If fn(x) denotes the nth partial sumzz of 
(4.11) then there exists a positive number q < ir such that 

(4.12) <(x)-f,,(x)j E M(q), -1 x 1, = 1, 2, 3, 

for some constant M independent of n. 
Proof. By Theorem 4.3 

If(x) - f.(x) = 2 f|. _- t - 1) dt 

By Lemma 4.1 there exist positive numbers K and q < ir such that 

In+]()l: Kq+1, - < t < 1, n-1, 2,* . 

Combining this with the bound on f,,+,(x - t - 1) given by Theorem 3.2, we obtain 

If(x)- f.(x)l ? (KAM,q)(L), -1 < x < 1, n = 1, 2, 

This completes the proof. 
THEOREM 4.6. If f(x) belongs to class Q, then the series 

I 

(4.13) f(t) dt+f(1)(1)B2(x)-1f()(O)B2(1 -x)+1(3)(1)B4(X)+J(3)(0)B4(1 -X)+... 

converges uniformly to f(x) on 0 _ x < 1. If fn(x) denotes the nth partial sum of (4.13), 
then there exists a positive constant q < 7r such that 

(4.14) 1f(x)-, f(x)j X M(q-), 0 < x < 1, n = 1, 2, 

for some constant M independent of n. 
Proof By Theorem 4.4 

If(x) - f2m+l(x)l = If(x) - Hm(x)l = IGm(x)l, 

where Hm(x) and Gm(x) are given by (4.7) and (4.8), respectively. But by Lemma 4.1, 
there exist positive numbers K and q < 7r such that 

(4.15) jf "'(t)f I Kq", 0 < t < 1, n = 1, 2, . 

Combining this with the bounds for i2,,+(x) asserted by Theorem 3.2, we obtain 

2m+1 

(4.16) 11(x) - 12m+1(x) I < Km,I~ 
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Thus 

If(X) - f2m+2(X)I = If(X) - f2m+1(X) - f (2m')(1)B2.+2(X) 

-< If(x) - f2m+1(X)j - I+ f(2m+l)(1)B2m+2(X) 

<27r KM, h2+2 

q 

where, in deriving the last inequality, we have used (4.15), (4.16) and (3.6). The proof 
follows immediately. 

Widder [12] proved that a real function can be expanded in an absolutely con- 
vergent Lidstone series (4.3) if and only if it is the difference of two minimal com- 
pletely convex functions. Widder's proof made strong use of the estimates (3.4) and 
the additional bound 

(4.17) (-1)2 '9j2,+l(x) - M'/. 2, n = 1, 2, *. 

Since bounds of the form (4.17) do not exist for the even functions j32.(x), it seems 
unlikely that a similar characterization can be obtained for expansions of the form 
(4.13). 
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